observed [C2-Tel- $\mathrm{Cl} 1-\mathrm{C} 12=-94.3(5)$, $\mathrm{C} 2-$ $\mathrm{Tel}-\mathrm{Cl1}-\mathrm{C} 16=86 \cdot 7(5), \mathrm{C} 2-\mathrm{Te} 3-\mathrm{C} 31-\mathrm{C} 32=$ $34 \cdot 3$ (6) and $\left.\mathrm{C} 2-\mathrm{Te} 3-\mathrm{C} 31-\mathrm{C} 36=-150 \cdot 6(5)^{\circ}\right]$. Also bond lengths found for Te 3 are shorter than for Tel. Taking into account the ligand distribution and following the ideas of Husebye (1983), we presume that the Tel lone non-bonding pairs occupy octahedral positions above and below the coordination plane whereas the Te 3 lone pairs occupy equatorial positions together with C 2 in a trigonal bipyramidal arrangement.

Financial support from the European Economic Community (MdM, Research Fellowship) is gratefully acknowledged. MdM is especially grateful to Instituto de Ciencia de Materiales de Barcelona (CSIC) where this work was developed.

## References

Alcock, N. W. \& Harrison, W. D. (1982). J. Chem. Soc. Dalton Trans. pp. 251-255.

Bondl, A. (1964). J. Phys. Chem. 68, 441-451.
Brandt, C. A., Comasseto, J. V., Nakamura, W. \& Petragnan, N. (1983). J. Chem. Res. pp. 156-157.

Chikamatsu, K., Otsubo, T., Ogura, F. \& Yamaguch, H. (1982). Chem. Lett. pp. 1081-1084.

Forsyth, J. B. \& Wells, M. (1959). Acta Cryst. 12, 412-415.
Husebye, S. (1983). Proceedings of the Fourth International Conference on the Organic Chemistry of Selenium and Tellurium, edited by F. J. Berry \& W. R. McWhinnie, p. 362. Univ. of Aston, Birmingham, England.
Kauffmann, T. (1982). Angew. Chem. Int. Ed. Engl. 21, 410-429.
Krief, A. (1980). Tetrahedron, 36, 2531-2640.
Main, P., Germain, G. \& Woolfoon, M. M. (1984). mULTANII/84. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
Motherwell, W. D. S. \& Clegg, W. (1978). PLUTO. Program for plotting molecular and crystal structures. Univ. of Cambridge, England.
Otsubo, T., Ogura, f., Yamaguchi, H., Higuch, H., Sakato, Y. \& Misumi, S. (1981). Chem. Lett. pp. 447-448.

Petragnani, N. \& Schill, G. (1970). Chem. Ber. pp. 2271-2273.
Seebach, D. \& Beck, A. K. (1975). Chem. Ber. 103, 314-321.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Torres, L. (1990). J. Organomet. Chem. 181, 69-78.

Acta Cryst. (1991). C47, 1266-1269

# Structures of $\boldsymbol{N}$-Substituted 1,2-Oxazines. II. Bicyclic Bridged Derivatives 

By B. Tinant and J.-P. Declerce<br>Laboratoire de chimie physique et de cristallographie, Université Catholique de Louvain, 1 place Louis Pasteur, 1348 Louvain la Neuve, Belgium

(Received 1 May 1990; accepted 18 October 1990)


#### Abstract

I) 2-(2-Oxa-3-azabicyclo[2.2.2]oct-5-en-3-yl)-1,1-ethylenedicarbonitrile, $\quad \mathrm{C}_{10} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{O}, \quad M_{r}=$ 187.20, orthorhombic, Pnam, $a=8.933$ (1), $b=$ $13.088(1), c=8.002$ (2) $\AA, V=935.6$ (3) $\AA^{3}, Z=4$, $D_{x}=1.33 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda(\mathrm{Cu} \mathrm{K} \mathrm{\alpha})=1.5418 \AA, \quad \mu=$ $7.5 \mathrm{~cm}^{-1}, \quad F(000)=392, T=291 \mathrm{~K}, \quad R=0.056$ for 642 observed reflections. (II) 2-(tert-Butylthio)-3-(2-oxa-3-azabicyclo[2.2.2]octan-3-yl)acrylonitrile, $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{OS}, \quad M_{r}=252.38$, monoclinic, $P 2_{1}$, $a=12.098$ (4),$\quad b=17.770$ (5),$\quad c=10.926$ (5) A $\AA$, $\beta=112 \cdot 44(3)^{\circ}, \quad V=2171(1) \AA^{3}, \quad Z=6, \quad D_{x}=$ $1.16 \mathrm{~g} \mathrm{~cm}^{-3}, \lambda($ Mo $K \alpha)=0.71069 \AA, \mu=2.1 \mathrm{~cm}^{-1}$, $F(000)=816, \quad T=291 \mathrm{~K}, \quad R=0.064$ for 3441 observed reflections. (III) 2-(tert-Butylthio)-3-(6-oxa-7-azabicyclo[3.2.2]non-8-en-7-yl)acrylonitrile, $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{OS}, M_{r}=264 \cdot 39$, orthorhombic, $P 2_{1} 2_{1} 2_{1}$, $a=9.962$ (3),$\quad b=12.576$ (3),$c=11.766$ (4) $\AA, \quad V=$ 1474.1 (7) $\AA^{3}, Z=4, D_{x}=1 \cdot 19 \mathrm{~g} \mathrm{~cm}^{-3}, \lambda($ Mo $K \alpha)=$ $0.71069 \AA, \mu=2.10 \mathrm{~cm}^{-1}, F(000)=568, T=291 \mathrm{~K}$, $R=0.051$ for 1259 observed reflections. The $E$ configuration of the double bond is observed for both


(II) and (III). Some geometrical parameters indicate clearly that the conjugation between the olefin and the ring system is less in molecule (III) than in the other two derivatives.

Introduction. A series of $N$-substituted bicyclic 1,2oxazines has been synthetized and their thermal isomerization in epoxy-epimines has been studied (Vaerman, 1989).


With the aim of quantifying the effects of the bridge length $(n)$ and that of the substituent $(R)$ of the olefin on the geometry, we have determined the

0108-2701/91/061266-04\$03.00

[^0]X-ray structures of some of these 1,2 -oxazines. In this second paper, we report on the structures of three bridged bicyclo compounds: (I) 2-(2-oxa-3-aza-bicyclo[2.2.2]oct-5-en-3-yl)-1,1-ethylenedicarbonitrile ( $n=2, \quad R=\mathrm{CN}$ ), (II) 2-(tert-butylthio)-3-(2-oxa-3-azabicyclo[2.2.2]octan-3-yl)acrylonitrile ( $n=2, R=$ $\mathrm{S}^{\prime} \mathrm{Bu}$ ), (III) 2-(tert-butyltio)-3-(6-oxa-7-azabicyclo-[3.2.2]non-8-en-7-yl)acryonitrile ( $n=3, R=\mathrm{S}^{\prime} \mathrm{Bu}$ ).

Experimental. The different data-collection and refinement parameters are summarized in Table 1. Compound (I) was recrystallized from acetone, (II) and (III) from diethyl ether. Lattice parameters refined using 15 reflections in the range $5 \leq 2 \theta \leq 30^{\circ}$. Huber diffractometer for (I), Syntex $P 2_{1}$ diffractometer for (II) and (III), graphite-monochromatized $\mathrm{Cu} K \alpha$ for (I), Mo $K \alpha$ for (II) and (III). One standard reflection checked every 50 reflections: no significant deviation. All three structures solved by SHELXS86 (Sheldrick, 1985). Three H atoms in (I), eight in (II), from difference Fourier syntheses, all the other H atoms calculated ( $\mathrm{C}-\mathrm{H}=1.08 \AA$, $\left.\mathrm{H}-\mathrm{C}-\mathrm{H}=109 \cdot 5^{\circ}\right)$. Anisotropic least-squares refinement (SHELX76; Sheldrick, 1976) using F; H atom isotropic with common refined temperature factor. The structure of (I) was first solved in space group Pna2, with the whole molecule in the asymmetric part of the unit cell. The $N$-substituent was coplanar with $\mathrm{C} 1, \mathrm{O} 2, \mathrm{~N} 3$ and C 4 and it bisected the bicyclo system. So space group Pnam with a disordered bridge (as a simultaneous single and a double bond between C5 and C6) could be choosen after a shift of the origin by $0 \cdot 25 z$. The disordered H 's of $\mathrm{CH}=\mathrm{CH}$ and $\mathrm{CH}_{2}-\mathrm{CH}_{2}$ were included with fixed positions and an occupation factor of $0 \cdot 5$. In structure (II), there are three independent molecules of which the third one ( $C$ ) has some atoms with high $B$ values (see Table 2). The maximum residual density peak was found in this agitated region and also the maximum shift to error was on $U_{23}$ of atom C17C. Atomic scattering factors from International Tables for X-ray Crystallography (1974, Vol. IV).

Discussion. The final atomic coordinates for the non-H atoms are given in Table 2* for (I), (II) and (III) respectively. Figs. $1(a), 1(b)$ and $1(c)$ are stereoscopic drawings of the molecules showing the numbering of the atoms (PLUTO; Motherwell \& Clegg, 1978).

The first point of interest was to establish the configuration of the double bond for (II) and (III).

[^1]Table 1. Data collection and refinement parameters

|  | (I) | (II) | (III) |
| :---: | :---: | :---: | :---: |
| Crystal size (mm) | $0.22 \times 0.11 \times 0.07$ | $0.32 \times 0.42 \times 0.65$ | $0.32 \times 0.27 \times 0.20$ |
| $(\sin \sigma / \lambda)_{\text {max }}\left(\AA^{-1}\right)$ | $0 \cdot 60$ | 0.62 | 0.65 |
| Range of $h k l$ | $0 \leq h \leq 10$ | $0 \leq h \leq 14$ | $0 \leq h \leq 12$ |
|  | $0 \leq k \leq 15$ | $0 \leq k \leq 21$ | $0 \leq k \leq 16$ |
|  | $0 \leq l \leq 9$ | $-13 \leq 1 \leq 12$ | $0 \leq 1 \leq 15$ |
| Indices of standard reflection | 031 | 150 | 060 |
| Number of measured reflections | 910 | 4415 | 1939 |
| Number of observed reflections $[I>2.5 \sigma(I)]$ | 642 | 3441 | 1259 |
| Number of parameters | 85 | 461 | 191 |
| $R$ | 0.056 | 0.064 | 0.051 |
| $\cdots R$ | 0.063 | 0.066 | 0.061 |
| $g\left[w=1 /\left(\sigma^{2}+g F^{2}\right)\right]$ | 0.00097 | 0.00010 | 0.00418 |
| $S$ | $2 \cdot 28$ | 3.13 | 1.03 |
| $(\Delta / \sigma)$ | 0.03 | 0.86 | 0.19 |
| $\Delta \rho_{\text {mux.min }}\left(\mathrm{e} \AA{ }^{3}\right.$ ) | 0.25, -0.21 | 0.62, -0.27 | 0.28, -0.22 |

As shown on Figs. $1(b)$ and $1(c)$, it was $E$ for both compounds. Thus in the three derivatives a cyano group is located on the same side as the O atom of the oxazine. This cyano group is essentially coplanar with the $\mathrm{N}-\mathrm{O}$ bond in all the three molecules. In (I), the atoms $\mathrm{N}, \mathrm{O}, \mathrm{C}=\mathrm{C}$ and CN are coplanar because of symmetry; they deviate from their best mean plane by less than $0.07 \AA$ in (II)* and (III). The angles $\mathrm{N}-\mathrm{C}=\mathrm{C}$ and $\mathrm{C}=\mathrm{C}-\mathrm{CN}$ are significantly enlarged (average values of 129.7 and $125.9^{\circ}$, respectively, see Table 3) because of the steric repulsion. The same situation, with the same enlargement of the angles, was also observed in the $Z$ monocyclic derivative 2-(tert-butylthio)-3-(3,6-dihydro-2H-1,2-oxazin-2-
yl )acrylonitrile where S and O atoms interact (Tinant \& Declercq, 1991).

Another point of interest is the degree of conjugation between the olefin and the $\mathrm{N}-\mathrm{O}$ bond from one molecule to the other. The hybridization of the $N$-oxazine atom can be estimated by the sum of the angles around it and by its deviation from the plane passing through its three neighbour atoms. The angles around N are listed in Table 3; the sum of these angles is 360.0 for (I), $354 \cdot 5$ for (II) and $348.3^{\circ}$ for (III). The deviations of N from the plane through $\mathrm{Cc}, \mathrm{O}$ and $\mathrm{C} v \dagger$ are 0 for (I), 0.18 for (II) and $0 \cdot 28 \AA$ for (III). These values indicate a more pyramidal N atom for (III).

A lesser conjugation in molecule (III) is also clearly apparent from some of the bond length values (Table 3). The $\mathrm{N}-\mathrm{C} v$ and $\mathrm{C}-\mathrm{CN}$ single bonds are about $0.05 \AA$ shorter, and the $\mathrm{C}=\mathrm{C}$ bond $0.04 \AA$ longer in (I) and (II) than in (III). The electrons are thus far more delocalized along $\mathrm{ON}-\mathrm{C}=\mathrm{C}-\mathrm{CN}$ in (I) and (II) but also in the monocyclic derivative

[^2]Table 2. Atomic coordinates $\left(\times 10^{4}\right)$ and equivalent isotropic temperature factors $\left(\AA^{2}\right)$

$$
U_{\mathrm{eq}}=(1 / 3) \sum_{i} \sum_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}
$$

| $x$ |  | $y$ | $z$ | $U_{\text {eq }}$ |
| :---: | :---: | :---: | :---: | :---: |
| Compound (I) |  |  |  |  |
| C1 | 2224 (5) | 7910 (3) | 2500 | 0.050 (1) |
| 02 | 1237 (3) | 8817 (2) | 2500 | 0.065 (1) |
| N3 | 2125 (4) | 9696 (2) | 2500 | 0.052 (1) |
| C4 | 3754 (4) | 9487 (3) | 2500 | 0.044 (1) |
| C5 | 4073 (4) | 8860 (3) | 4051 (5) | 0.060 (1) |
| C6 | 3188 (4) | 7949 (2) | 4042 (4) | 0.058 (1) |
| C9 | 1462 (5) | 10573 (3) | 2500 | 0.046 (1) |
| C10 | -45 (5) | 10797 (3) | 2500 | 0.051 (1) |
| C11 | -452 (3) | 11854 (2) | 2500 | 0.053 (1) |
| N12 | -773 (5) | 12696 (3) | 2500 | 0.070 (1) |
| C13 | -1243 (5) | 10092 (3) | 2500 | 0.061 (1) |
| N14 | -2264 (5) | 9575 (3) | 2500 | 0.095 (2) |
| Compound (II) |  |  |  |  |
| C1A | 2250 (6) | 5530 (4) | 4171 (7) | 0.064 (1) |
| O2A | 3149 (4) | 5986 (3) | 3956 (4) | 0.081 (1) |
| N3A | 2879 (5) | 6018 (4) | 2574 (5) | 0.077 (2) |
| C4A | 1797 (5) | 5639 (5) | 1764 (6) | 0.067 (2) |
| C5A | 1910 (8) | 4805 (5) | 2130 (9) | 0.088 (2) |
| C6A | 2207 (9) | 4759 (5) | 3581 (8) | 0.094 (2) |
| C7A | 1047 (7) | 5892 (5) | 3505 (9) | 0.090 (2) |
| C8A | 765 (7) | 5978 (5) | 2056 (9) | 0.093 (2) |
| C9A | 3732 (5) | 6257 (4) | 2205 (6) | 0.050 (1) |
| Cl 0 A | 4817 (5) | 6559 (3) | 2943 (6) | 0.047 (1) |
| C11A | 5262 (6) | 6700 (4) | 4328 (7) | 0.056 (1) |
| N12A | 5693 (5) | 6839 (5) | 5454 (7) | 0.086 (2) |
| S13A | 5762 (1) | 6825 | 2139 (2) | 0.053 (1) |
| C14A | 6733 (5) | 6005 (4) | 2281 (6) | 0.054 (1) |
| C15A | 5998 (7) | 5326 (4) | 1691 (10) | 0.085 (2) |
| C16A | 7456 (7) | 6224 (5) | 1461 (9) | 0.085 (1) |
| Cl 17 A | 7562 (8) | 5880 (7) | 3691 (8) | $0 \cdot 110$ (3) |
| C1B | 6178 (7) | 3335 (4) | 3089 (8) | 0.071 (2) |
| O2B | 6640 (4) | 3434 (2) | 2071 (5) | 0.065 (1) |
| N3B | 6550 (4) | 2748 (3) | 1380 (5) | 0.056 (1) |
| C4B | 5778 (5) | 2209 (4) | 1659 (6) | 0.053 (1) |
| C5B | 4609 (6) | 2609 (5) | 1453 (7) | 0.071 (2) |
| C6B | 4857 (7) | 3241 (5) | 2433 (9) | 0.084 (2) |
| C7B | 6780 (7) | 2657 (5) | 3930 (7) | 0.078 (2) |
| C8B | 6371 (6) | 1943 (4) | 3073 (6) | 0.064 (2) |
| C9B | 7515 (5) | 2542 (4) | 1143 (5) | 0.046 (1) |
| Cl0B | 8511 (5) | 2953 (4) | 1291 (6) | 0.051 (1) |
| C11B | 8765 (5) | 3695 (4) | 1828 (7) | 0.061 (2) |
| N12B | 9041 (6) | 4293 (4) | 2238 (8) | 0.093 (2) |
| S13B | 9518 (2) | 2566 (1) | 656 (2) | 0.070 (1) |
| C14B | 10723 (6) | 2163 (4) | 2036 (8) | 0.071 (2) |
| Cl5B | 11451 (8) | 2747 (6) | 3010 (10) | 0.113 (3) |
| C16B | 10248 (10) | 1620 (7) | 2795 (11) | 0.139 (4) |
| Cl7B | 11521 (7) | 1767 (7) | 1464 (10) | 0.130 (3) |
| ClC | 4125 (8) | 61 (5) | 2286 (11) | 0.100 (3) |
| 02 C | 5294 (5) | -61 (3) | 2372 (6) | 0.080 (1) |
| N3C | 5651 (6) | -796 (3) | 2789 (8) | 0.086 (2) |
| C4C | 4696 (8) | - 1230 (5) | 3023 (12) | 0.099 (3) |
| C5C | 4338 (8) | -845 (8) | 3967 (8) | 0.109 (3) |
| C6C | 4039 (12) | -96 (7) | 3571 (14) | 0.151 (5) |
| C7C | 3341 (11) | -483 (10) | 1326 (10) | 0.186 (5) |
| C8C | 3683 (11) | - 1276 (7) | 1744 (11) | 0.129 (4) |
| C9C | 6464 (7) | - 1083 (4) | 2413 (10) | 0.091 (2) |
| Cl 10 C | 7149 (6) | -756 (4) | 1803 (8) | 0.067 (2) |
| C11C | 7092 (6) | 13 (4) | 1405 (7) | 0.062 (2) |
| N12C | 7112 (5) | 599 (4) | 1022 (6) | 0.074 (2) |
| S13C | 8197 (2) | -1320 (1) | 1446 (2) | 0.085 (1) |
| C14C | 9609 (7) | -1208 (5) | 2859 (8) | 0.075 (2) |
| C15C | 9874 (13) | -478 (8) | 3283 (17) | 0.305 (7) |
| Cl6C | 10519 (9) | -1688(8) | 2671 (10) | 0.141 (4) |
| Cl7C | 9444 (11) | - 1525 (11) | 4055 (12) | 0.185 (6) |
| Compound (III) |  |  |  |  |
| Cl | -2675 (6) | 4580 (5) | 2898 (6) | 0.060 (1) |
| C2 | -4044 (6) | 4117 (6) | 2700 (6) | 0.075 (2) |
| C3 | -4551 (7) | 3337 (7) | 3622 (8) | 0.079 (2) |
| C4 | -3610 (7) | 2424 (5) | 3890 (6) | 0.068 (2) |
| C5 | -2153 (7) | 2756 (5) | 3976 (5) | 0.057 (1) |
| O6 | -1631 (4) | 2850 (3) | 2799 (4) | 0.062 (1) |
| N7 | -1644 (5) | 3886 (4) | 2357 (4) | 0.054 (1) |
| C8 | -2269 (7) | 4649 (5) | 4128 (6) | 0.065 (2) |
| C9 | -1957 (8) | 3754 (6) | 4622 (6) | 0.071 (2) |
| C10 | -406 (5) | 4265 (4) | 2082 (4) | 0.046 (1) |
| C11 | 777 (5) | $3779 .(4)$ | 2095 (4) | 0.045 (1) |
| Cl 2 | 1035 (7) | 2762 (5) | 2615 (5) | 0.057 (1) |
| N13 | 1330 (7) | 1972 (5) | 3001 (6) | 0.085 (2) |
| S14 | 2209 (2) | 4442 (1) | 1574 (1) | 0.055 (1) |
| C15 | 2511 (5) | 3834 (4) | 172 (4) | 0.050 (1) |
| C16 | 1324 (10) | 4008 (9) | -591 (7) | 0.115 (3) |
| C17 | 2785 (13) | 2669 (6) | 284 (7) | 0.116 (3) |
| C18 | 3755 (9) | 4390 (7) | -277 (7) | $0 \cdot 100$ (3) |

(Tinant \& Declercq, 1991), than in (III). Nevertheless the $\mathrm{N}-\mathrm{O}$ bond seems unaffected as its length is similar in all the compounds, ranging from 1.397 to $1.411 \AA$. This is very short for a $\mathrm{N}-\mathrm{O}$ bond as we have shown (Tinant \& Declercq, 1991).
It may be asked whether the conjugation is so different in molecule (III) compared with the others. Considering (II) and (III) for which the substitution and the configuration of the olefin are identical, only the different bridge length can be considered. Indeed molecule (II) is obviously more rigid than (III) and this is reflected in the torsion angles about $\mathrm{N}-\mathrm{O}, 25^{\circ}$ in (III) as compared to about $5^{\circ}$ in (II). However as we have mentioned above the atoms involved in the conjugated pathway are coplanar in both molecules. A non-negligible twist of the double bond is nevertheless only observed in (III) where the torsion angle $\mathrm{N}-\mathrm{C}=\mathrm{C}-\mathrm{CN}$ is $-12^{\circ} \quad$ (compensated by $\mathrm{O}-\mathrm{N}-\mathrm{C}=\mathrm{C}$ at $5^{\circ}$ otherwise the atoms would not be coplanar).

Only the conformation of the [3.2.2] bicyclic system in (III) is worth a comment. The endocyclic torsion angles are: for $\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-$ N6-O7, 91, $-54,43,-80,97,-25$ and $-61^{\circ}$; for $\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 9=\mathrm{C} 8,-27,-54,43$, $44,-75,-6$ and $73^{\circ}$; for $\mathrm{C} 1-\mathrm{N} 7-\mathrm{O} 6-\mathrm{C} 5-\mathrm{C} 9=$


(a)

(b)


(c)

Fig. 1. Stereoscopic views of (a) compound (I), (b) compound (II) and (c) compound (III).

Table 3. Selected bond distances $(\AA)$ and bond angles $\left({ }^{\circ}\right)$

C8, 63, $-25,-28,46,-6$ and $-47^{\circ}$. Because of the bridge, the six-membered ring is inevitably a boat conformation but it is highly distorted in the C5-O6-N7 region. Concerning the two seven-
membered rings, that with a $\mathrm{C} 8-\mathrm{C} 9$ double bond has a nearly regular boat conformation (Hendrickson's theoretical values: $-30 \cdot 9,-57 \cdot 5$, $57 \cdot 5,30 \cdot 9,-69 \cdot 9,0,69 \cdot 9^{\circ}$ ) while that containing $\mathrm{N}-\mathrm{O}$ is a distorted chair, particularly around $\mathrm{N}-\mathrm{O}$ (theoretical values: $83 \cdot 5,-63 \cdot 8,63 \cdot 8,-83 \cdot 5,66 \cdot 1,0$, $-66 \cdot 1^{\circ}$ ) (Hendrickson, 1967).

## References

Hendrickson, J. B. (1967). J. Am. Chem. Soc. 89, 7036-7061. Motherwell, W. D. S. \& Clegg, W. (1978). PLUTO. Program for plotting molecular and crystal structures. Univ. of Cambridge, England.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Sheldrick, G. M. (1985). SHELXS86. In Crystallographic Computing 3, edited by G. M. Sheldrick, C. Krüger \& R. Goddard, pp. 175-189. Oxford Univ. Press.
Tinant, B. \& Declerce, J.-P. (1991). C47, 827-829.
Vaerman, J. C. (1989). PhD Thesis, Catholic Univ. of Louvain, Belgium.

# Structure of 4,5,6,7-Tetrahydro-1,3-benzimidazole-2-thione 

By Yukishige Kitano and Akira Ishitani<br>Toray Research Center, Inc., Sonoyama, Otsu, Shiga 520, Japan<br>Haruyo Sato and Shinzo Imamura<br>Chemicals Research Laboratory, Toray Industries, Inc., 9-1 Ooe-cho, Minato-ku, Nagoya 455-91, Japan<br>and Tamaichi Ashida<br>Faculty of Engineering, Nagoya University, Chikusa-ku, Nagoya 464, Japan

(Received 9 May 1990; accepted 22 October 1990)


#### Abstract

C}_{7} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{~S}, \quad M_{r}=154 \cdot 23, \quad\) tetragonal, $P 4_{3} 2_{1} 2, \quad a=7 \cdot 1519$ (6), $\quad c=14 \cdot 3532(6) \AA, \quad V=$ $734 \cdot 2 \AA^{3}, \quad Z=4, \quad D_{m}=1 \cdot 40, \quad D_{x}=1 \cdot 395 \mathrm{Mg} \mathrm{m}^{-3}$, $\lambda(\mathrm{Cu} K \alpha)=1.5418 \AA, \mu=3.19 \mathrm{~mm}^{-1}, F(000)=328$, $T=296 \mathrm{~K}$, final $R=0.026$ for 520 observed reflections. The molecule has a crystallographic two-fold axis of symmetry. Both the S and the C atom bonded to it lie on this twofold axis, which also bisects the $\mathrm{C}(2)-\mathrm{C}\left(2^{\prime}\right)$ and $\mathrm{C}(4)-\mathrm{C}\left(4^{\prime}\right)$ bonds. The exocyclic C-S forms the thione structure in the solid state. The five-membered imidazole ring is planar, with the S atom also lying in this plane, whereas the cyclohexene ring has a distorted half-chair conformation. There is a relatively weak but linear hydrogen bond from the $\mathrm{N}-\mathrm{H}$ group to the S atom of an adjacent


molecule along c. Each S atom, because of its location on a twofold axis, is involved in two such bonds.

Introduction. The imidazolethione system has been a subject of interest on account of its wide-ranging pharmacological activity (Kohn, Kohn, Steenberg \& Buckley, 1977; Gosselin, Imbach, Townsend \& Panzica, 1979) and its effective inhibition of metallic corrosion (Donnelly, Downie, Grzeskowiak, Hamburg \& Short, 1978). 4,5,6,7-Tetrahydro-1,3-benzimidazole-2-thione is one such compound newly synthesized by the reaction between potassium thiocyanate and 2-aminocyclohexanone oxime; the latter's amino N atom, acting as an electrophile, and its C atom bonded to the hydroxyimino group, acting


[^0]:    (C) 1991 International Union of Crystallography

[^1]:    * Lists of structure factors, anisotropic thermal parameters and H -atom parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 53673 ( 40 pp .). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square. Chester CHI 2HU, England.

[^2]:    * As the three independent molecules of (II) have similar geometries, only mean values of the parameters will be considered in the following discussion.
    $\dagger \mathrm{C} c$ and Cv denote C of the cyclic and vinyl systems, respectively.

